

Fabricating Freedom:
Free Software Developers at Work and Play

Jonah Bossewitch
GSOC 6023: The Political Economy of Media

Prof. Paolo Carpignano
December 22, 2007

“Concentrate on the effect of the telegraph on ordinary ideas: the coordinates of
thought, the natural attitude, practical consciousness… not through frontal assault but,
rather, through the detailed investigation of a couple of sites where those effects can be
most clearly observed.”

James Carey1

Gigabytes of digital ink have been spilled analyzing the political, cultural, social, and economic
forces which describe free and open source software (FOSS) projects. In this essay I will share
and reflect on some of my personal experiences working on one particular free software
project, and speculate on ways in which these observations may be extrapolated beyond my
experiences. How are free software projects organized? What are some of the motivations that
factor into participation and contribution? What kinds of activities are involved in
participating in a free software project? How does producing free software differ from
producing other information goods? How does the experience of working on a free software
project inform and transform the participant?

Towering Changes

The events of September 11th 2001 had a dramatic impact on the world, with effects spanning
the geopolitical to the personal. My life was no exception, and as a New Yorker I was deeply
traumatized by the attack and its aftermath. My career also took a surprisingly sharp turn as
the attack suddenly altered the local economic landscape and the job market. At the time I
was looking for a new job, since the bubble that my preceding employer was riding had finally
burst. The city's economy was devastated and some incredibly promising leads vaporized
along with the towers. I faced some difficult choices and decided to pursue a role that I
intuitively felt was a questionable fit – consulting. I did not relish the prospect of becoming a
mercenary coder, as I preferred to choose where to devote my labor, ideally to organizations
whose mission I respected. Furthermore, I identified myself as an artisan/craftsman and
enjoyed working on sophisticated, long term projects that I could devote myself to, learning
and improving my knowledge and skills along the way. I had never tried consulting and
endevoured to keep an open mind about the new experience. I consoled myself with the
knowledge that while I would be trading off breadth for depth, and encountering a wide
variety of situations and problems, even if the encounters were shallow. While I might not get
to know any project or system intimately well, the varieties of languages and constraints
might make the experience worthwhile. And besides, I might just like it.

In 2001 I was hired as a software developer at a small interactive marketing company called
Abstract Edge2. The company was founded during the Internet gold rush of the late nineties
when three of the founders developed the website which helped organize and manage the
Million Mom March3. Abstract Edge aspired towards advertising, marketing and strategy
consulting, but at the time were essentially a web agency that built dynamic web sites for their
clients. Their clients included some non-profits such as The Gift of New York and Give Kids
the World as well as corporate clients including Clairol Professional and the New York City's
Marriott Hotels. Abstract Edge had survived the dot-com collapse by cautiously managing
their expansion and not getting drawn into the greedy mania of venture capitalism. They
operated on a small profit margin, maintained a small staff with minimal overhead, and
frequently lowballed their bids in response to requests for proposals.

2

In the summer of '02 we pitched a project with The American Legacy Foundation4, a multi-
million dollar non-profit organization founded as a part of the settlement in the class-action
litigation against the tobacco industry. The American Legacy Foundation developed the
successful “truth” campaign, a youth-focused anti-tobacco education campaign focusing on
smoker cessation. They were planning a sister site to the truth.org, this one designed to
support anti-smoking activists, to teach them how to more effectively organize and how to
promote an anti-smoking message. They wanted this site to function as a community
environment, enabling activism through viral social networking. While sites like these are
commonplace in 2007, in 2002 the kinds of functionality they envisioned was not
commonplace. This was the Web 1.0 era, in the days before the popularity of Wikipedia,
MySpace, and Facebook, and sites with strong support for participatory social media were just
beginning to emerge.

The American Legacy Foundation had already spent a year developing content for this
environment when they sought out a technical partner to implement their concept. The had
already developed a vast amount of resources for the initial site launch, and had compiled
over a dozen 3-inch binders full of material, including articles, activities, news, facts,
timelines, surveys, biographies. This content was dense and richly connected and they needed
a system for editors to organize and administer it. Due to the controversial nature of their
content, and the litigious nature of their adversaries, everything published on the site needed
scientific and legal sign-off prior to publishing, and they wanted a system to manage this
workflow. The environment also needed to support membership, profiles, discussion boards,
commenting, email, synchronous chat, and workflows for submission and moderation.

Abstract Edge had initially contracted to deliver this entire environment on an incredibly
compressed timeline, and as the lead technical architect on the project I knew that our
previous development models were not up to the task. In the past, Abstract Edge had usually
delivered custom solutions, developed in house from scratch. Software is composed of many
layers, so it is a slight misnomer to talk about developing anything from scratch , but we were
not leveraging platforms or frameworks that were becoming necessary to keep up with the
rising bar of user expectations. The requirements for systems like these were growing in
complexity as the media itself grew in popularity and importance.

Contentment Management

In the early days of the web, organizations were content with one-way mass publishing
managed by a technical support staff. The importance of managing an organization's presence
and message on the web continued to grow and marketing and communications personnel
became very concerned that they had lost precise control over publishing. Publishing control
now resided in the hands of webmasters, or worse, third party consultants who needed to be
contacted and paid for every small adjustment and modification. Management began to
prioritize the development of systems which allowed for non-technical administrators to
organize and manage publication to the web. These systems tended to be inherently complex,
since they strove to embody the hierarchy and bureaucracy of the organization they served.
They were designed to capture the organization's processes and needed to model its roles and
structures accordingly. These processes can be captured informally ‒ through the cultural of
use within the system, or formally ‒ rigidly enforced by the system's explicitly defined rules.

3

Many organizations instinctively gravitated towards rigid enforcement and modeling, often
underestimating the difficulty involved in explicitly defining these processes, and neglecting
the importance of engineering flexibility into these systems so that these processes could
evolve and change over time, in response to shifting needs and conditions.

As organizations desired increasingly complex publishing systems, modeled specifically on
their workflows and processes, and intended to be administered and used by non-technical
staff, software solutions emerged which reflected these demands. This class of systems is
known as “Content Management Systems”, and high-end enterprise systems like this can be
immediately traced back to the early nineties. At the turn of the millennium, enterprise
content management systems were expensive, and cost upwards of millions of dollars to
provision, deploy, and support. Classic users of content management systems are news sites
like CNN and the New York Times, which have strict editorial workflows and a vast depth of
content. But a variety of different domains can be modeled using content management tools,
including brochure-ware, e-commerce, corporate intranets, educational course management,
and community organizing.

As organizations began to outgrow their first-generation web sites, they sought replacements
which enabled them to administer the sites themselves, without extensive technical expertise.
Many homegrown content management systems were developed, but especially as blogs and
wikis gained popularity, richer and more powerful interfaces were in high demand. At the
same time, FOSS software aimed at this problem space were maturing and consolidating
around a few prominent platforms.

Progressive Progress

The American Legacy Foundation's project was enormously complex, and I believed that
approaching it using our traditional development processes carried a great risk of failure. I
began to research other alternatives, examining hosted solutions, proprietary toolkits, and
open source solutions. The risk of using a sophisticated framework involved the time required
to become proficient with the complex concepts and constructs . As with any specialized tool,
learning to use it proficiently will likely increase efficiency and productivity, but will require
education and time to master.

My supervisor hesitantly agreed with my reasoning, and after a very rapid evaluation process,
we selected a young and unproven open source CMS called Plone for the project5. We invested
part of the development budget to bring in an Plone expert to jumpstart our training with the
software, and hired a second freelance developer proficient in the Python programming
language to to assist with the development. The fact that Plone was free software was a
relevant factor in our decision, but mostly for financial reasons, not political or strategic– we
did not have a good understanding of the community we were about to join and the
transformative experiences would accompany them.

At the time I used open source software daily, but had not participated closely in any projects
beyond asking a few questions on mailing lists. I was largely uneducated about the differences
between open source licenses, and was only peripherally aware of the politics around
intellectual property, free culture, and free software. I had experimented with GNU/Linux in

4

college, and although I thought it was great that the source code was available, but was not a
free software evangelist. I had been studying development methodologies and project
management literature, and was very interested in alternative processes for creating better
software, but from a practical perspective, not an ideological one.

As we began to settle into the rhythm of development, something was distinctly different
about this effort. In the past, the open source technologies which I had used were separated by
layers of abstraction below the actual problem I was trying to solve. So, I might be developing
on an open source operating system (e.g. GNU/Linux), in an open source language (e.g. Perl
or Python), against an open source database (e.g. PostgreSQL or MySQL) and running an
open source web server (e.g. Apache), but I wasn't developing operating systems,
programming languages, databases or web servers – I was developing web applications. In
this case, the application we were developing was very similar to the tool we were using to
develop it with – the specifics of our problem could be construed as a very thin layer on top of
the underlying Plone platform. Unsurprisingly, many of the issues and challenges we faced
were very similar to the issues that other members of the software community were facing,
and closely resembled the problems that this project was attempting to generalize and
address. Their aptitudes, interests, and goals were often very similar to our own and we found
that we had a great deal in common with other members of this development community.

We began to work quite closely with the community, regularly communicating over email in
IRC chats about the kinds of issues we were dealing with and how others had attempted to
solve them. The immensity of our challenge suggested automating certain mundane
operations that we would likely have tackled manually with brute force had our project been a
little smaller. When we described the infrastructure we were developing to automate certain
aspects of our development, there was a very keen interest in our solution. The freelancer we
had hired turned out to be quite brilliant and had also had personal experience participating
in open source development. We shared some of the software we were working on, and other
developers began to work with it, and found it clever and useful. We were invited to a small
workshop, also known as a “sprint”, that the developers of this project were organizing in
Rotterdam to share our progress and participate in the ongoing development of the next
iteration of the platform.

Our company was not in the habit of sending the developers on business trips, and it was hard
for management to understand how they would directly benefit from sending us to this event.
We explained to them the advantages of participating in a peer production effort,
recapitulating many of the (now) standard arguments explaining the self-interested benefits
of participating in open source development. In addition to the efficiency of having multiple
developers test and debug our software, we also made the case that capturing developer
mindshare was a valuable long-term investment for the agency, as we could steer the
community towards solving problems where we held stakes. Management grudgingly gave
way and agreed to sponsor our participation. I distinctly recall my co-workers determination
to attend the event, mentioning that if our employers decided not to send us, he would use his
vacation days and attend at his own expense. I remember thinking how strange it sounded to
consider using vacation days for a work-related event, but then I had never attended a sprint
or a developers conference and did not fully appreciate their appeal.

5

A “sprint” (a.k.a. “hackathon”) is a multi-day focused development session, inspired by a
practice described by the agile development methodology “extreme programming.”6 Unlike a
traditional conference there are no planned speakers or formal talks, although there are
plenty of impromptu training sessions and short presentations. Instead, participants self-
organize and form a consensus around a few small projects they can accomplish in a the
alloted time. They work intensely in pairs or small teams using the pair programming
approach, also advocated by the extreme programming development philosophy. Experienced
developers often pair up with less experienced developers, and there is usually a coach leading
the session, and helping to set the agenda and track activities on a whiteboard. These
in-person meetings are important occasions, where development on the project is advanced,
leadership in the community is established, development approaches are shared and
exchanged, and architectural and strategic planning that is sometimes difficult to work out
asynchronously can discussed. Sprints are also very social, as the intense work ethic gives way
to an intense play ethic. Sprinters will often code late into the evening, and then stay out
socializing late into the morning.

Roderdam was an incredible adventure, and I met many independent developers who had
been involved with the project for years. The Plone community attracts many fiercely
independent entrepreneurs, and represents a particular blend of hybrid economies. The
developers and companies participating in the community rarely compete directly against
each other. Rather, they compete against other platforms that occupy the same solution space,
and they regularly compete against these formidable platforms in pitches. By targeting larger
and more complex engagements, the platform continues to grow, rather than cannibalizing
itself with squabbles, forks, and rebranding.

The Plone community is also very reflective and self-conscious about its image and processes,
and constantly seeking to refine the way it grows. New features are added to the project
through a mixture of consensual prioritizing and client needs. Clients sometimes unwittingly
underwrite the creation of a generalized new feature, which they happen to need first, but this
is still economically fair and rational, since they are leveraging dozens of other features that
were, in turn, developed and shared under the same arrangement. This arrangement is made
formal through legal and cultural structures that enforce and encourage this style of
cooperation. Community members even devote themselves to branding and marketing the
project, as greater recognition of the software is better for all of the participants in the Plone
ecology. The experience expanded my thinking about the possibilities of a software career,
and taught me a great deal about the appeal of working long-term on a FOSS project. In
today's fragile and uncertain employment market, the identity and cohesion that a projects
like Plone offer to developers is one way to stitch together a post-modern career in a post-
geographic, global economy.

The Ouroboros of Freedom

Software projects like Plone are often misunderstood by focusing exclusively on their
underlying technological platform. A better representation comes from considering the larger
ecology in which the platform is embedded. As Paul Everitt, founder of ZEA Partners and
executive director of the Plone Foundation phrases it “The software is an artifact of the
community.” A fuller elaboration of a technology project’s ecology takes into account the

6

platform, the community, and the processes that bind them together. This ecological model of
software projects incorporates the dynamic lifecycle of the project over time, and provides
insight into how a project might behave under complex, unanticipated circumstances.

Plone environments typically present specific affordances to people using the software, many
in the form of innovations and decisions that the Plone community decided to incorporate
into it. The community includes vendors (the various individuals, organizations, corporations
and universities participating in the development of the platform), clients (individuals,
corporations, non-profits contracting the vendors to create Plone-based solutions) and users
(the administrators, editors, members and visitors of the client's environment's). These
diverse communities of participants are connected to each other through formal and informal
structures and processes ranging from legal entities and contracts to technically mediated
mailing lists and collaborative cyberspaces. The Plone project did not attempt to single-
handedly create the rules and processes which constitute this ecological model. Instead, they
built upon the edifice of the free software movement, using many of the tools and practices
found within those projects, infusing their project with flavors of the culture they built upon.

FOSS ecologies have been a breeding ground for experimenting with various models of
structure and governance which promote constructionist learning within the community.
Since writing software is an act of creative expression, it is predictable that the artifacts
created by a software community capture the values of that community through the inclusion
(and omission) of features and the metaphors used in the software they create. The recursive
questioning of meta-structures is a habitual pattern of programmer's thinking, and it is no
surprise to see this analytical gaze turned back on itself. The community's proximity to the
architecture of their own communication channels encourages a reflexive attitude towards
their own communicative superstructure.

“Eating your own dogfood” is a popular saying in the technology sector that is used to describe
a project that consumes its own product. FOSS projects regularly consume other FOSS
products, creating a feedback loop that reinforces the processes and values understood by
those communities. The software that manages code repositories and bug-tracking systems
incorporates styles of collaboration, consensus building, decision making, and conflict
resolution which percolate throughout the community as a whole. Cultural practices around
mailing lists and group chats bring together the people with ideas and the people who can act
on them. Wikis and self-organized conferences encourage autonomously motivated action and
peer-production, not usually in response to authority or hierarchy. FOSS projects are
organized for community and access to knowledge, not market-driven production and selling.
Their tools embody and reflect these priorities. You could say that they eat their own dogfood
on process, and that they are what they eat.

Smoke Break

Back in New York City, our anti-tobacco project was suffering from delays and setbacks all too
common in the software world. But, as Abstract Edge began to pitch new projects, it became
apparent that Plone was a powerful tool for approaching a wide range of efforts.

As a developer, working as a mercenary can be a devastating for morale. In most situations,

7

your work is by definition a one-off or throw-away, meant to be written once never to be
returned to. The pressure to deliver a solution quickly often comes at the expense of careful
design, and the details under the hood are nothing to be proud of. There is very little
continuity between engagements, and individual projects rarely provide opportunities to
develop a sophisticated infrastructure, or to attend to the aesthetic sensibilities of creating
beautiful software or writing elegant code. Software development is a form of production
whose characteristics bear a strong resemblance to traditional craftsmanship. The metaphors
which dominate the activity revolve around objects, constructions, and fabrication and
experts are regarded as virtuosos.

Like other forms of material fabrication, writing software requires imagination, invention, and
ingenuity. While there are ongoing attempts to automate and commodify aspects of software
production, it is still fundamentally a creative act which relies on human judgment and
intuition, and increasingly, teamwork and collaboration. In an era when software
environments mediate the dynamics of human interaction, the designation of software
architecture is more than just an analogy. Software has come to resemble traditional
architecture as a leading art, and many programmers venerate their profession, guarding their
integrity and regarding the products of their labor as important and influential. For
individuals who care about their products of their labor, shoddy craftsmanship is
disappointing and demoralizing. There are some styles of consulting where artistry and
attention to detail is valued, but in many situations cutting corners in the standard. With
excellent project management, trust can be established between the client and the agency, but
it is difficult to foster a dynamic which embodies good faith.

Participating in an open source project allowed us to transcend the limitations and constraints
of the oppressive conditions of mercenary work, and escape into a world of self-improvement,
creative expression, and reflexive design. The software functioned as an intermediate object of
collaboration, cutting across the boundaries of space and time. In introduced continuity
between our projects, and allowed us to collaborate with other developers and companies
without incurring burdensome bureaucratic overhead.

As a independent freelancer, or an employee of a small company it is difficult to find peers or
colleges to learn from. Even accolades from a superior are hollow compared to the honest
criticism and respect from experienced professionals. There is little an active learner
appreciates more than having their work vetted by someone whose skills and experience they
honor and respect. Open source communities offer precisely this sort of learning
environment, with motivational dynamics that are similar to the academic world. Publishing a
piece of code, having a patch accepted, and gaining commit privileges to project's repository
are forms of peer review that recognize and validate a programmer's skills and
accomplishments.

Blurred Borders

Beyond the social and reputation capital earned and exchanged on FOSS projects,
programmers enjoy a great deal of personal satisfaction and fun in their work. Many FOSS
developers are technical hobbyists, and their involvement resides at the juncture between
work and play. Many of the mundane and annoying demands of client is the kind of work that

8

only the perverse would voluntarily subject themselves to. However, the typical work on a free
software project is composed of professional socializing and communication, as well as the
construction of elegant and harmonious environments, and these activities can be incredibly
rewarding. Contrary to popular myths, many free software developers earn a respectable wage
working on these projects, either through direct services, or through an employer who
sponsors their work. They are also building stable careers, and sometimes businesses, around
their respective watering holes. Even most ideologically committed free software projects,
such as Debian and Wikipdia, pay members wages to carry out key functions that have been
empirically determined to suffer when left to voluntary contributions.

After Rotterdamn, many more sprints and conferences followed. Plone's international
emphasis was somewhat unique, and its strong multilingual support helped create a positive
feedback loop. European governments and municipalities frequently selected Plone since
funding Plone development meant that their investment in projects remained local, as
opposed to lining the coffers of companies like Microsoft, IBM, or Sun. This, in turn, helped
improve Plone's multilingual support, which led to its widespread international adoption and
uptake. We traveled to locations like Berne, Vienna, and Naples, and even participated in a
sprint held in an Austrian Castle. I never would have guessed that becoming a software
developer would take me backpacking across Europe in my late twenties, or that I could
convince my employer to finance these excursions. Many of my fellow attendees were
independent freelancers, funding themselves to attend these gatherings.

The gatherings were incredible networking opportunities, and occupied a novel place between
work and play. They were part work, part vacation. Often participants would attach traditional
vacation time before or after the event, and event organizers often incorporate local
sightseeing and festivities. The community functioned as the hub of a diverse network of
sectors. Corporations, non-profits, governments, and educational sectors all encountered each
other through the intermediary of this project's ecology. We were gallivanting around exotic
locations, but the value proposition of these meetings was real and meaningful. Production
was was happening, but it was self-organized, self-determined, and self-satisfying.

While trade and academic conferences are traditional activities for some professionals, FOSS
programmers had inflected their own personality and style on the events. The variety of
formats at free software conferences usually conforms to their non-hierarchical, do-it-
yourself, ethic. Nobody reads papers to each other, there are typically ad-hoc “birds of a
feather” sessions organized on the fly, plenty of unstructured time for conversations, and
everybody's favorite, the “lighting talks” – where each presenter has 5 minutes to present an
idea or a work in progress. This creates many different kinds of spaces and dynamics for
interactions between participants. In contrast to stereotypically stuffy professional
conference, free software conferences have reputations as fun events, not to be missed.

The social dynamic established within the Plone community reminded me of a medieval guild
or a modern American college fraternity. In addition to the incredibly unbalanced gender
ratio, participants often adopted nicknames, went through initiatory hazing rituals, and were
motivated by peer pressure to contribute to the progress of the imagined community.
Especially since developers regularly transmit communications using electronic media, these
punctuated opportunities to interact in-person facilitated ritual communication, strongly

9

enforcing cultural practices and social bonds.

The sprints were also very productive, as an opportunity to focus on a self-selected challenge,
without the typical interruptions of an office setting. The conditions were conducive to the
state of “flow”, allowing developers to get into “the zone”, an essential precondition for
developer productivity7. This psychological state is characterized by energy, concentration,
timelessness, and immersion and is thought to emerge with appropriate balance between
challenge and skill. Programming is the kind of activity which is extremely well suited for
eliciting flow, especially under the right environmental conditions.

My co-worker became more and more involved in the project, to the point where his work for
Abstract Edge became a transient activity which filled the time between conferences and FOSS
work. Instead of splitting our development responsibilities down the middle, I began to run
interference for him with management, in order to allow him to to work on abstract
infrastructural problems. I was responsible for the specific client requests, and he was
working on generalized and abstract tools that I would use to solve the specifics. The
arrangement resembled research and development at a large corporation, but we were at a
very small agency, and our labor was all supposed to be billable.

When I finally left Abstract Edge, I was able to take my software and community of colleges
and friends along with me to my new job. There is distinct irony in the logic that the best way
to insure continuity across jobs is to make sure that nobody owns the intellectual products of
your labor. Under most employment arrangements, an employee does not own the software
written while working. But, if the software is released under free license, it can continue to be
used and developed even after leaving. From this perspective, writing open software on
employer's payroll is a powerful act of resistance. But as more companies are reorienting their
software businesses as services, and the entire industry transitions from selling software
artifact to selling software services, the liberation of software is economically rational, and
resistance is becoming the norm. Companies are beginning to recognize that owning software
is a liability not an asset, but for individuals, it is part of their personal portfolio and a record
of their past accomplishments.

The Specter of dotCommunism

Some members of the Plone community recently organized a campaign to publicly pledge
some of their disposable labor to the project. The “10% Plone Manifesto8” is an explicit
attempt to exert control over the direction that the platform grows, and the kinds of problems
that developers devote their time to. The introduction to the manifesto explains:

“In the last years many of us have started Plone consulting or development companies
with roots in the Plone community. To most of us it was a dream come true — being
able to make a living from writing free software and working with this great community
at the same time.

But… time takes its toll, and everyday life, mortgages, money, administration and
having to earn to feed the kids, all push us further into the tunnel of dull office-people
rather than cool free software developers.

10

Sure, we publish free software, more than just occasionally, but most development is
steered by what our clients need, not what we think Plone needs or what we want to
build.

Take control!

We want to stay ahead of the curve. We want to stay updated. We want to keep
contributing, even in a world of building software for a living. Inspired by the practices
of the amazing Google, we came up with our own preemptive strike; The 10% Plone
Manifesto.”

This declaration captures the sentiment that this community is trying to preserve.
Independence and self-determination are core values for these developers and they are
attempting to reclaim control over the type of software they develop. As the language in this
Manifesto alludes, many of them consider themselves to be part of a peaceful revolution. They
are struggling to overthrow and disrupt the dominant powers and hierarchies, carving out a
benevolent and enlightened alternative, all while making mortgage payments and raising a
family. .

The Programmers' Condition

As this essay suggests, much of the participation in an FOSS project goes beyond the work of
Hannah Arendt's homo faber, and clearly encompasses her formulation of action.9 Action is
manifest in the capacity of participants to initiate beginnings, and to publicly assert their
identity in communicative acts towards a public society. For Arendt, these actions are
intrinsically political since they allow to participants exercise their agency through speech and
persuasion. Much of the educational value, and perhaps some of the individual appeal of
participating in FOSS projects comes from realizing these higher forms of viva activa.

The experience of sharing and participating in a vital community have the power to mobilize
individuals to action by exposing them to real politics and civic engagement, in Arendt's sense
of the terms. FOSS projects can help foster self-determination, and allow individuals to
explore variations on democratic forms of governance that are vital to our emerging societies.
These experiences translate easily and directly into traditional forms of grasssroots activism
and it is quite commonplace for FOSS participation to function as an indoctrination (usually
with the “gateway” movements of free software and free culture), teaching participants to
practically engage directly in politics and personally taste the fruit of political action.

For me, the experience of working closely on a free software project was highly transformative
– cognitively, personally, emotionally, and socially. Not only was participation in this project
technically instructive, but it educated me on issues of ethics and governance, and raised my
political consciousness. I made lifelong friends, became concerned and engaged with pressing
issues of social justice, and felt empowered to improve my life's conditions. While my
experiences are distinct and unique, this pattern of awakening is not entirely uncommon. My
experiences have demonstrated to me that these projects are about much more than just
technology, or even social engineering and architecture – they are also petri dishes of civic

11

activation, engagement and maintenance whose form should be closely studied.

 The American educational system stopped trying to teach people to share in kindergarten,
whether or not everybody learned the lesson. The direct experience of participating in
common-based peer-production validates the counter-intuitive proposition that sharing is not
necessarily altruistic, as it can support self-interests and result in greater value and wealth.
With cooperation and trust, everybody can gain a smaller piece of a much larger pie, netting
an absolutely greater value than selfish competition. Yochai Benkler's treatise, The Wealth of
Networks10 makes a strong analytic argument for this economic reality, but many people learn
best through direct experience. Some will continue to suspect his arguments until their own
experiences lend supporting evidence to his theory.

Learning how to share is much more difficult lesson than most people acknowledge, and free
software developers sometimes demonstrate this ethic in humorous ways. They share beer,
cigarettes, and even joke about sharing sexual partners, all with the knowing “open source”
refrain. They believe that they are struggling to construct a common good, one that will
transcend the particular project or client that consumes their day-to-day subsistence. They are
redefining the boundaries between work and play, work and action, and fabrication and
communication. They are a part of a movement, but they are also continually starting
movements. One character at a time.

12

1 Carey, James W. “Technology and Ideology: The Case of the Telegraph” in his Communications as Culture
(Winchester: Unwin-Hyman, 1989), p. 210.

2 <http://abstractedge.com>
3 <http://www.millionmommarch.org/>
4 <http://www.americanlegacy.org>
5 <http://plone.org>
6 See <http://www.extremeprogramming.org/> for an introduction.
7 Csikszentmihalyi, Mihaly (1990). Flow: The Psychology of Optimal Experience. (New York: Harper and Row).
8 Geir Bækholt, The 10% Plone Manifesto <http://www.jarn.com/blog/the-10-plone-manifesto> (December 16, 2007)
9 Arendt, Hannah. (1958). The Human Condition. (Chicago: University of Chicago Press).
10 Yochai Benkler, (2006). The Wealth of Networks: How SocialProduction Transforms Markets and Freedom. (New

Haven, CT: Yale University Press.

http://www.jarn.com/blog/the-10-plone-manifesto
http://www.extremeprogramming.org/

